Pyroshock Modeling

Sponsor: Harris Corporation, Robert Wells Advisor: Dr. Kumar

Instructors: Dr. Helzer, Dr. Gupta, Dr. Shih

Students: Nathan Crisler, Charles DeMartino, Chad Harrell, Chase Mitchell

Team 15 Slide 1/9 Nathan Crisler Pyroshock Midterm I

Catch-up:

BackgroundSpecifications

Nathan Crisler Pyroshock Midterm I

Team 15 Slide 2/9

Here and Now:

- Brainstorming
 - Pulse Generation
 - Current Test Demonstration
 - https://www.youtube.com/watch?feature=playe
 - Data Acquisition
 - Software Selection
 - MATLab Preferred
 - C or C++ possible

Team 15 Slide 3/9

The Problem

- Main goal has changed
 - Modeling program to determine test parameters
 - Removes need for trial and error style testing
 - Analytical models (FEM) can dictate which fixture to use
 - Manipulate the dynamic system with varied mass values

Nathan Crisler Pyroshock Midterm I

Team 15 Slide 4/9

Challenges

MATLab

Team 15

Slide 5/9

- All group members intermediate
- C or C++ looks more viable
- Matching SRS curves
 - Math behind the creation of the curves
 - 6DOF Dynamic System
 - Simplified by fixing masses together
 - Tolerance bands set by NASA & MILSpec are tight.
 - Complex mathematical solutions require FEM and extensive testing
 - More data provides more comparisons for accuracy

Where to?

- Requesting sample test results from Mr. Wells
 - Expected Output
 - Comparison data (actual vs. ideal)
 - Sample SRS curves
 - Curve matching
 - Solidify grasp on curve tailoring
 - Magnitude of pulse generation and effect on outcome
- Develop test rig to generate data
 - Drop Table
 - Shock Tube
 - Pneumatic Hammer

Team 15 Slide 6/9

Schedule

1.3	# Brainstorming	14 days	10/6/14	10/23/14	
1.3.1	Pulse Generation	7 days	10/6/14	10/13/14	Chad
1.3.2	Measurement Methods	13 days	10/8/14	10/23/14	Chase
1.3.3	Scheduling	7 days	10/6/14	10/14/14	Charles
1.3.4	Current Method Demo	0 days	10/21/14	10/21/14	Sponsor,All
1.4	Development	14 days	10/24/14	11/12/14	
1.4.1	Testing Apparatus	5 days	10/24/14	10/29/14	Chase,Nathan
1.4.1.1	Dimension & Physical setup	5 days	10/28/14	11/3/14	Chase,Nathan
1.4.1.2	Material Selection	9 days	11/1/14	11/12/14	Charles
1.4.1.4	Resonance Response	9 davs	11/2/14	11/12/14	Chad

Charles DeMartino Pyroshock Midterm I

Team 15 Slide 7/9

Summary

- From full build to focus on model
- Force generation
- Data acquisition
- Data translation
- Begin CAD design for scaled test rig
- Preliminary programming
 - Pseudocode
 - Flow Chart

Team 15 Slide 8/9

References

- [1] Wells, Robert. "Conference Call with Robert Wells." Telephone interview. 24 Sept. 2014.
- [2] Wells, Robert. "Additional Pyroshock Info." E-mail correspondence. oi Oct 2014.
- [3]Aizawa, Kai, and Peter Avitabile. Shock Respnse Fixture Development and Customization. CAMAL, Chuo University, SDASL, UMASS Lowell., n.d. Web. 3 Oct. 2014.
- [4]Lansmont Shock Machine P122L OS. Long Shock." YouTube. Ed. Anton Bakastov. YouTube, 31 Jan. 2012. Web. 13 Oct. 2014.
- [5]USA. Department of Defense. Defense Technical Information Center. Pyroshock. Springfield, VA: D.o.D, Print.

Team 15 Slide 9/9